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Numerical Analysis of Dielectric-Rod Waveguides
With Deep Corrugation

Hiroshi Kubo, Member, IEEE,and Masayoshi Tahara

Abstract—Dielectric-rod waveguides with deep surface corruga-
tion is analyzed by using the finite-difference time-domain method.
In order to mitigate the load in numerical calculation and to ana-
lyze a wide region, the method is formulated in two-dimensional
form. It is shown that disks located in a line function as a wave-
guide of low loss in a frequency region. The procedure of deciding
the propagation constant from the analyzed field is presented. The
complex propagation constant is obtained and the dependence of
the amount of radiation on the corrugation amplitude is discussed.

Index Terms—Dielectric waveguide, discrete Fourier trans-
forms, FDTD methods, periodic structures, propagation.

I. INTRODUCTION

T HE dielectric waveguides with a corrugated surface
have been of considerable interest in the optical or

millimeter-wave regions because of the important role they
play in applications such as filters [1], grating couplers [2],
and leaky-wave antennas [3]. There have been various studies
dealing with the properties of the electromagnetic fields
supported by the planar and strip dielectric waveguides with
a periodic surface [4]–[7], while there exist some studies that
consider cylindrical dielectric waveguides with a periodic
surface. Marcuse and Derosier [8] have first analyzed the
characteristics of mode conversion and radiation of guided
waves in the cylindrical dielectric waveguide with a periodic
boundary perturbation. Wlodarczyk and Seshadri [9] have
reported a systematic analysis on the excitation and scattering
of guided waves on the periodic cylindrical waveguide using a
singular perturbation approach. With respect to the numerical
analysis of the periodic cylindrical waveguide, there have been
a few approaches. Applying the null-field method, Lundqvist
[10] has pointed out several interesting features of the stopband
of the guided wave. Making use of the mode-matching method,
Yasumoto and Kubo [11] have discussed the convergence and
accuracy of the numerical solution. In these methods, the fields
are expanded in the form of a finite series of wave functions,
and the results can be obtained for shallow corrugations.

In a deep corrugation, the modulation indexes are so large
that the phenomena proper to periodic structure may occur in-
tensely. In this paper, the finite-difference time-domain (FDTD)
method is applied to the analyses of dielectric waveguides with
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Fig. 1. Dielectric-rod waveguide with periodic structure.

deep corrugation. The disks located in a line, which can be con-
sidered an ultimate shape of corrugated rod, are also analyzed.
Taking account of the field distribution of the guided wave,
the FDTD method is formulated in two-dimensional form, so
that longer waveguides can be calculated. It can be expected
that the accuracy of the propagation constant improves by pro-
cessing analysis data of a longer region. A procedure based on
the discrete Fourier transformation (DFT) is presented for deter-
mining the phase constant from the FDTD results. The propaga-
tion loss is examined about the disks connected to uniform rod
waveguides through transducers. The dispersion relation of the
complex propagation constant is obtained for the fundamental

-type wave. The dependence of radiative leakage on the
amplitude of corrugation is brought out.

II. FORMULATION

Fig. 1 shows a dielectric-rod waveguide with periodic struc-
ture. The surface varies rectangularly with respect to the-di-
rection. Shape of the corrugation is specified by and

and the period is denoted by. Uniform rod waveguides with
radius are connected at both ends. We formulate the differen-
tial equations of the FDTD method in the cylindrical coordinate
system for this problem. Fig. 2(a) shows the spatial relation-
ship of the field components for an off--axis unit cell. Fig. 2(b)
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Fig. 2. (a) Spatial relationship of field components for an off-z-axis unit cell.
(b) Space points in a lattice of' = '(j).

shows the space points in a lattice of . The space point
is denoted as corresponding to the coordinates

(1)

where , , and are natural numbers, and are the lat-
tice space increments in the- and -directions, and is the
lattice angle increment in the-direction. The permittivity and
permeability in the cell are given by and

.
Here, -type wave polarized in the direction is

fed through a uniform waveguide into the periodic waveguide.
Since the incident wave field varies sinusoidally with respect
to the -direction and the structure of Fig. 1 is axially sym-
metric, the fields in the waveguide also vary sinusoidally. Thus,
the fields at the space point or the point 1/2 increment apart from
it are given in the form of

(2)

Applying Faraday’s Law on the face of the cell, the
equation for computing the is derived. The line integral of
electric field along the four sides is approximately given by

(3)

The surface integral of magnetic flux density is approximately
given by

(4)

Substituting these two equations and writing a central difference
expression at time stepto replace the time derivative, we ob-
tain

(5)

where is the time increment. Applying Faraday’s Law on the
and faces of the cell, we obtain

(6)
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(7)

Next, we consider an electric field on a side and the four mag-
netic fields on the faces sharing the side. Applying Ampere’s
Law to these fields, we obtain the following equations for com-
puting the electric fields:

(8)

(9)

(10)

where

(11)

(12)

Fig. 3. Zoning of the computational region. The shape of the waveguide is also
depicted near� = 10�� in the region.

(13)

The equations for computing the fields of the on--axis
cell can be deduced by taking account of the parity about
the axis. For the sake of space limitation, they are not
given here. These equations at both off--axis cells and
on- -axis cells are independent of so that all we have
to calculate are , ,

, , and
.

Fig. 3 shows zoning of the computational region. The one
side coincides with the-axis, and the other three sides are sur-
rounded by perfect matched layers (PMLs). wave field in-
cident to the waveguide is generated on the plane . The
total fields are calculated in the region , and
the scattered fields are calculated in the region .
In view of wavelength, the lattice space incrementsand
are chosen as , .

III. A NALYSIS RESULTS

We analyze two kinds of periodic waveguides. One is a deeply
corrugated waveguide with , , ,
and with and the other is the dielectric
disks located in a line, which corresponds to the corrugation
with , , , and . The
dielectric disks located in a line can be considered an ultimate
shape of corrugated rod.

A. Transducer

Uniform waveguides are connected to the periodic waveguide
through transducers so that the energy of the modes is con-
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Fig. 4. Shape of the transducer between a uniform waveguide and the dielectric
disks located in a line.

verted efficiently. Fig. 4 shows a shape of the transducer. Fig. 5
shows the field of 20 disks with , , and

for , where the radii of the transducer are
given by , , , ,

, , , , and
. After transforming the quantities into logarithm,

the instantaneous field are plotted by changing brightness.
The waves are radiated from two transducers. Two waves cancel
each other so that hyperbolic interference fringes are observed.
The loss between two uniform waveguides is 0.3 dB. The loss is
caused by radiation from the transducers, as shown in Fig. 5, and
reflection. Without the transducers, the loss increases to 2.1 dB.
The loss can be lowered under 0.04 dB through longer trans-
ducers with , , , ,

, , , , ,
, , , , ,
, , , and . The

converted wave is propagated along the line of disks without
loss. It can be said that the line of disks operates as a lossless
waveguide, except for attenuation regions discussed later.

B. Phase Constant

The spectrum in a periodic waveguide with infinite length is
distributed according to the well-known relation [12]

(14)

where denotes the phase constant of the fundamental wave.
Though waveguides with infinite length do not actually exist,
the propagation constant is also useful in the applications. Here,

Fig. 5. Field distribution ofe near 20 disks withw = 0:7a, � = 2:0a,
andp = 1:4a for ka = 1:65. The larger the field is, the darker the shade. The
shades along the left-hand-side end show the cross section of disks, transducers,
and uniform waveguides.

and the attenuation constantare presumed from the anal-
ysis data of the periodic waveguide with finite length. Through
the transducer, the wave energy is converted and becomes the
eigenmode of the periodic waveguide at the point above several
waves apart from it. Fig. 6 shows the spatial spectrum distribu-
tion of in the deeply corrugated waveguide for

. The distribution has been obtained by discrete Fourier
transforming the field data covering 36 periods. Peaks of the
spectrum seems to be distributed according to (14). However,
magnifying the spectrum in the direction of the horizontal axis,
each peak is composed of discrete values apart from the reso-
lution . In DFT, discrete fields

are transformed to

(15)

The resolution is given by . If is equal to a pe-
riod of the wave field, the periodic field consists of the waves
with wavenumber . However, cannot neces-
sarily be equal to the period because the propagation constant is
unknown and the field is composed of so many waves, as shown
in (14). If there is a wave component not equal to ,
several coefficients in the neighborhood of the wave component
then takes a value of nonzero. Whichever wavenumber we may
choose as , the value contains the error of order of the reso-
lution. For increasing , the resolution becomes high. For ex-
ample, field data extending 100 wavelength is necessary for ob-
taining resolution accuracy better than 1%. It takes a lot of time
and memory to calculate such a long region, though we have
removed the dependency on the-direction from FDTD calcu-
lation in the previous section.
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Fig. 6. DFT spectrum of the deeply corrugated waveguide withw = 0:7a,
w = 0:7a, � = 1:5a, � = 0:5a, " = 2:0, and length of 36 periods for
ka = 1:65.

Now we are concerned with only one wave and want to de-
termine the wavenumber, i.e.,. We intend to make cor-
respond not to the period of the total field, but to an integral
multiple of the period of the concerned wave. Using field data
at points, are calcu-
lated. The largest coefficient is chosen from the co-
efficients in the range of the fundamental wave. Similarly, using
field data at points,

are calculated and the largest
coefficients are chosen, respectively. It can be ex-
pected that one of is close
to an integral multiple of the period of the concerned wave, and
the then becomes maximum with respect to.
When becomes maximum for , the esti-
mated value for is given by . In
order to examine the validity, we apply this procedure to the field
in a uniform waveguide with no corrugation and compare the re-
sults with the true value obtained analytically. In Fig. 7(a)–(d),
the convergence of the estimated is plotted as a function
of for a uniform waveguide with radius and ,
where denotes the phase constant.is chosen as 40, 60,
80, and 100, respectively. For and , the esti-
mated values converge to 2.813. Compared with the resolution
0.125 of DFT for , the estimated value is almost equal
to the true value of 2.806.

C. Attenuation Constant

There are attenuation regions proper to dielectric waveguides
with periodic structure. The guided wave is attenuated owing to
the Bragg reflection or the leaky wave. In the leaky-wave re-
gion, the guided power decreases as the wave propagates in the
waveguide, and the attenuation constant can be determined by
evaluating Poynting vectors passing cross sections of the wave-
guide. In the Bragg reflection region, on the other hand, there is a
forward and backward wave. The schematic power distribution
of the two waves is shown in Fig. 8, where the reflection at the
transducer is neglected. The corrugation section is terminated

Fig. 7. Plot of the estimated�a of a uniform waveguide as increasingN for:
(a)L = 40, (b)L = 60, (c)L = 80, (d)L = 100 with radiusa, " = 2:0,
andka = 2:42.

Fig. 8. Schematic power distributions of the forward and the backward waves:
(a) in the shorter corrugated section and (b) in the longer corrugated section.

at the right-hand-side end by a PML. In the periodic waveguide
section, the forwarding wave decreases with respect to the-di-
rection. The reflecting wave is zero at the right-hand-side end
and increases with respect to the-direction. As shown in this
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Fig. 9. Attenuation and phase constants as a function ofka for: (a) the deeply
corrugated waveguide withw = 0:7a; w = 0:7a; � = 1:5a, � = 0:5a,
and " = 2:0 and (b) the disk waveguide withw = 0:7a, w = 0:7a,
� = 2:0a, � = 0:0a, and" = 2:0. The analysis results are plotted by solid
lines and the experimental results are plotted by circles.

figure, the Poynting vector is constant on any cross sections. In
Fig. 8(a), the Poynting vector on the plane is given by

(16)

where denotes the Poynting vector of the forwarding
wave on the plane . Fig. 8(b) shows the power distribution
in a longer corrugated section. The Poynting vector on the plane

is given by

(17)

Thus, the attenuation constantis given by

(18)

The dispersion relations of the deeply corrugated and disk
waveguides are shown in Fig. 9(a) and (b), respectively. The disk
waveguide also has the propagation region without loss in the
low-frequency region. Around , becomes large. The
stopband is due to the Bragg reflection, whereis nearly equal
to . The field becomes very small as it propagates. After
compensating the attenuation, we apply DFT to the field data
and determine the estimated value of. We measure the disper-
sion relations for the deeply corrugated waveguide. In Fig. 9(a),
the open circles show the phase constants and the closed circles
show the attenuation constants. The experimental phase con-
stants are obtained by measuring the resonant frequencies of the
corrugated waveguide with large copper sheets pasted on both
end faces. The experimental attenuation constants are obtained

Fig. 10. Attenuation constant in the Bragg reflection region of a dielectric-rod
waveguide for different corrugation depthd = 0:3; 0:5;0:7; and1:0.

by measuring the field attenuation along the corrugated wave-
guide. The analysis results agree comparatively with the exper-
imental values.

Now, the -type wave is fed through the uniform wave-
guide into the periodic waveguide. Owing to the corrugation,
the wave energy can be converted, in the high-frequency region,
into the higher order waves with the same field distribution in
the -direction. Higher order waves with different field distribu-
tions do not occur because the corrugation is axially symmetric.
Thus, the formulation in the preceding section can be applied to
the analysis of these waves with distribution in the form of
or . By discrete Fourier transforming the results, the spec-
trum of the field in the periodic waveguide can be obtained. In
the low-frequency region, only the spatial spectrum relative to
the wave shown in Fig. 9 appears. Above , other peaks
are found in the spectrum of field in the disk waveguide. Above

, other peaks are found in the spectrum of field in the
deeply corrugated waveguide. Thus, below these frequencies,
these waveguides can operate without the influence of higher
order waves.

In Fig. 10, the attenuation constant in the Bragg reflection
region is shown for different corrugation depth. is given by

(19)

so that the average radius of the waveguides may be kept con-
stant. For increasing, the value of attenuation increases and the
stopband width becomes broader. The attenuation and stopband
width of the disk waveguide are over twice as large compared
with those of the waveguide with shallow corrugation .

The attenuation observed for or in Fig. 9 is
due to the radiative leakage. The attenuation of the disk wave-
guide is smaller than that of the deeply corrugated waveguide. In
Fig. 11, the attenuation constant due to the radiative leakage is
plotted as a function of the corrugation depth. takes a max-
imum value with respect to the corrugation depth. The amount
of radiative leakage is not so large in the disk waveguide. The
radiative leakage can be considered as the coupling between the
guided and radiative waves. The coupling may be weak in very
deep corrugation.

Fig. 12 shows the influence of the corrugation on the phase
constant outside the Bragg reflection region. The change from

are plotted in ordinate and the corrugation depth in ab-
scissa. Below the reflection region, for increasing, becomes
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Fig. 11. Attenuation constant as a function ofka for the corrugated waveguide
with w = 0:7a, w = 0:7a, and" = 2:0.

Fig. 12. Change of phase constant from� versus corrugation depthd of a
dielectric-rod waveguide with" = 2:0.

Fig. 13. Comparison of the attenuation constant and the phase constant
calculated by the present method (solid line) and the Yasuura’s method
[11], [13] (broken line) as a function ofka for the sinusoidally corrugated
waveguide.

large monotonously. Above the reflection region, for increasing
, becomes small and has the minimum value in the very deep

corrugation.
Finally, we compare the result with that of other theoretical

method. Fig. 13 shows the dispersion relations of the rod wave-
guide with shallow sinusoidal corrugation by the present method
(solid line) and the Yasuura’s method [11], [13] (broken line).
The surface radius is given by

(20)

Two results are almost the same. This shows the validity of the
present method for corrugated waveguides.

IV. CONCLUSION

We have analyzed dielectric waveguides with a deep corru-
gation by the FDTD method. By taking account of the field dis-
tribution, we have had the FDTD formulation independent of
the coordinate to calculate long waveguides. A procedure of
deciding the propagation constant from FDTD results has been
presented and the convergence of the estimated value has been
confirmed. The dispersion relations has been obtained and the
dependence of the amount of radiation on the corrugation ampli-
tude has been brought out. The amount of radiative leakage takes
a maximum value by choosing the corrugation amplitude prop-
erly. Dielectric disks located in a line function as a waveguide
with low loss if the eigenmode is excited through the trans-
ducer. In the Bragg reflection region, the disk waveguides shows
the strong attenuation characteristics with wide bandwidth. The
amount of radiative leakage is not so large as that of deeply cor-
rugated waveguides. The Bragg reflection in the corrugated rod
waveguides has been recently applied to band rejection filters.
The above results show that band rejection filters with large at-
tenuation in the stopband and lower loss in the passband can be
realized by using disk waveguides.
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