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Numerical Analysis of Dielectric-Rod Waveguides
With Deep Corrugation

Hiroshi Kubg Member, IEEEand Masayoshi Tahara

Abstract—Dielectric-rod waveguides with deep surface corruga-
tion is analyzed by using the finite-difference time-domain method.
In order to mitigate the load in numerical calculation and to ana-
lyze a wide region, the method is formulated in two-dimensional
form. It is shown that disks located in a line function as a wave-
guide of low loss in a frequency region. The procedure of deciding
the propagation constant from the analyzed field is presented. The
complex propagation constant is obtained and the dependence of
the amount of radiation on the corrugation amplitude is discussed.

Index Terms—Dielectric waveguide, discrete Fourier trans-
forms, FDTD methods, periodic structures, propagation.

|I. INTRODUCTION

HE dielectric waveguides with a corrugated surface

have been of considerable interest in the optical or
millimeter-wave regions because of the important role they
play in applications such as filters [1], grating couplers [2],
and leaky-wave antennas [3]. There have been various studies
dealing with the properties of the electromagnetic fields
supported by the planar and strip dielectric waveguides with
a periodic surface [4]-[7], while there exist some studies tha. 1. Dielectric-rod waveguide with periodic structure.
consider cylindrical dielectric waveguides with a periodic

surface. Marcuse and Derosier [8] have first analyzed tlae . . . . .
- . L . ep corrugation. The disks located in a line, which can be con-
characteristics of mode conversion and radiation of gwdeg

.Sidered an ultimate shape of corrugated rod, are also analyzed.

waves in the cylindrical dielectric waveguide with a periodlci.aking account of the field distribution of the guided wave

boundary perturbation. Wiodarczyk and.Se.shadn N haYﬁe FDTD method is formulated in two-dimensional form, so

f quided th iodi lindrical id terng: longer waveguides can be calculated. It can be expected
ot guided waves on the periocic cylindrical waveguide usmgtﬁrﬂ the accuracy of the propagation constant improves by pro-

singular perturbation approach. With respect to the numencc""éssing analysis data of a longer region. A procedure based on

analysis of the periodic cylindrical waveguide, there have b?%ne discrete Fourier transformation (DFT) is presented for deter-

a few approaches. Applying the null-field method, Lundqvist . . i
[10] has pointed out several interesting features of the stopb m|(51|ng the phase constant from the FDTD results. The propaga

fth ided Maki fih q tchi th I0N loss is examined about the disks connected to uniform rod
otthe guided wave. aking use ot the mode-matching methqg, eguides through transducers. The dispersion relation of the

Yasumoto and Kubo [.11] have _dlscussed the convergence ) plex propagation constant is obtained for the fundamental
accuracy of the numerical solution. In these methods, the fie

. - . : -type wave. The dependence of radiative leakage on the
are expanded in the form of a finite series of wave functions 11-yp b g

. . amplitude of corrugation is brought out.
and the results can be obtained for shallow corrugations. P g 9
In a deep corrugation, the modulation indexes are so large
that the phenomena proper to periodic structure may occur in- Il. FORMULATION

tensely. In this paper, the finite-difference time-domain (FDTD) Fig. 1 shows a dielectric-rod waveguide with periodic struc-
method is applied to the analyses of dielectric waveguides wifire, The surface varies rectangularly with respect toztok
rection. Shape of the corrugation is specifiedy w,,, pi,and
pr» and the period is denoted byUniform rod waveguides with
Manuscript received March 30, 2000; revised December 6, 2000. radiusa are connected at both ends. We formulate the differen-
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N £ (i+1, j+1,k+1), Applying Faraday’s Law on the — ~ face of the cell, the
p(i+1, j+1, k+1) equation for computing thé,. is derived. The line integral of
electric field along the four sides is approximately given by

T
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Ftl)g S2 (a) Spatial rellatlonshlp of field components for an-ofixis unit cell. Substituting these two equations and writing a central difference
t tt , . ; : S
(b) Space points in a lattice of = (7). expression at time stepto replace the time derivative, we ob-
tain
shows the space points in a latticef= ¢(5). The space point
is denoted a$:, j, k) corresponding to the coordinates pnt(/2) <,L~7 k4 1)
L 2

iNp, jAp, kAz 1
(iAp, jAp, kAz) @) — /) <L k+}>

wheres, j, andk are natural numberg\p and Az are the lat-

tice space increments in the andz-directions, and\y is the 2A¢

lattice angle increment in the-direction. The permittivity and (i ke D)+ pli+ 1 k1) Azp(i)

permeability in the cell are given byfi + 1, j + 1, £+ 1) and .

pli+1, 5+ 1, k+1). N asen (i bl Y oty fer i ky—eni
Here,HE; -type wave polarized in the = 7 /2 direction is [Azez <L’ k+2> +o({eG0 k)= epi k1))

fed through a uniform waveguide into the periodic waveguide. (5)

Since the incident wave field varies sinusoidally with respect

to the ¢-direction and the structure of Fig. 1 is axially symwhereAt is the time increment. Applying Faraday’s Law on the

metric, the fields in the waveguide also vary sinusoidally. Thus,— p andp — ¢ faces of the cell, we obtain

the fields at the space point or the point 1/2 increment apart from

it are given in the form of Bt (1/2) <L + 1 k4 1)
¢ 27" T
E,=¢,(i+1/2, k)sinp(j)
rer g (L Y At
E,=e,(i, k)cosp(j+1/2) ks 2’ pli+1, k+1)ApAz
L. =e.(

(i, k+1/2)sin o) {Ap{ <L+‘ k+1) <L+%k>}

H,=h,(i, k+1/2)cosp(j +1/2)
H, =h(i+1/2, k+1/2)sine(j) +Az{e§ <i,k+%>—e§ <i+1,k+%>H
H.=h.(t+1/2, k)cose(j + 1/2). 2 (6)
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Next, we consider an electric field on a side and the four mag-
netic fields on the faces sharing the side. Applying Ampere’s
Law to these fields, we obtain the following equations for com-
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puting the electric fields:
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ep = % {e(i+1, k)+e(i+1, k+1)} {p(i)—i—%Ap} (11)

where

Ep = % ApAz{e(i, k) +e(i, k+ 1) +e(i+1, k)

+e(i+1,k+1)} (12)
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0.20A2) =
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(120A 0. 0)
PML

Fig. 3. Zoning of the computational region. The shape of the waveguide is also
depicted neap = 10Ap in the region.

£, =—1— {p(i)Ap - iApQ}

+ e(LL;—Fl) {p(L + DAp — %ApQ} .
The equations for computing the fields of the om@xis
cell can be deduced by taking account of the parity about
the axis. For the sake of space limitation, they are not
given here. These equations at both offxis cells and
on-z-axis cells are independent @f so that all we have
to calculate aree,(i + 1/2, k), e,(i, k), e.(d, & + 1/2),
hp(i, B 4+ 1/2), ho(i + 1/2, k + 1/2), andh.(i + 1/2, k)
(1=0,1,2, .. imax, £ =0, 1,2, ... kmax).

Fig. 3 shows zoning of the computational region. The one
side coincides with the-axis, and the other three sides are sur-
rounded by perfect matched layers (PMIEE,; wave field in-
cident to the waveguide is generated on the plare 50. The
total fields are calculated in the regio® < k& < k. — 20, and
the scattered fields are calculated in the redion< £ < 50.

In view of wavelength, the lattice space incremetyjsandA z
are chosen adp, Az = 0.1a.

(13)

Ill. ANALYSIS RESULTS

We analyze two kinds of periodic waveguides. One is a deeply
corrugated waveguide witly, = 0.7a, w,, = 0.7a, p, = 1.5a,
andp, = 0.5a with £, = 2.0 and the other is the dielectric
disks located in a line, which corresponds to the corrugation
with w, = 0.7a, w,, = 0.7a, p, = 2.0a, andp,, = 0.0a. The
dielectric disks located in a line can be considered an ultimate
shape of corrugated rod.

A. Transducer

Uniform waveguides are connected to the periodic waveguide
through transducers so that the energy of the modes is con-
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uniform waveguide

uniform waveguide

transducer

transducer

% disks in a line
disks in a line <
% transducer

> gg o, uniform waveguide
; Pui

transducer < p., Pre
P "3 b3 Fig. 5. Field distribution of. near 20 disks withv, = 0.7a, p» = 2.0q,
Pnzp andp = 1.4a for ka = 1.65. The larger the field is, the darker the shade. The
[ b2 shades along the left-hand-side end show the cross section of disks, transducers,
h Pu and uniform waveguides.
uniform waveguide { a

' [ and the attenuation constamtare presumed from the anal-

Fig.4. Shape ofthe transducer between a uniform waveguide and the dieledtsiS data of the periodic waveguide with finite length. Through
disks located in a line. the transducer, the wave energy is converted and becomes the

eigenmode of the periodic waveguide at the point above several
verted efficiently. Fig. 4 shows a shape of the transducer. Figweaves apart from it. Fig. 6 shows the spatial spectrum distribu-
shows the field:. of 20 disks withw, = 0.7a, p, = 2.0a, and  tion of¢,,(0.3a, z) in the deeply corrugated waveguide far =
p = l4afor ka = 1.65, where the radii of the transducer are1.65. The distribution has been obtained by discrete Fourier
given bypy1 = 1.1a, pro = 1.3a, pp3 = 1.5a, ppa = 1.7a, transforming the field data covering 36 periods. Peaks of the
pvs = 1.9a, pn1 = 0.8a, pn2 = 0.6a, p,3 = 0.4a, and spectrum seems to be distributed according to (14). However,
pna = 0.2a. After transforming the quantities into logarithmmagnifying the spectrum in the direction of the horizontal axis,
the instantaneous field. are plotted by changing brightnesseach peak is composed of discrete values apart from the reso-
The waves are radiated from two transducers. Two waves carlgéibn 27 /(14Az x 36). In DFT, discrete fields (kAz) (k =
each other so that hyperbolic interference fringes are observggl. k., k,, ..., ky_;) are transformed to
The loss between two uniform waveguides is 0.3 dB. The loss is
caused by radiation from the transducers, as shown in Fig. 5, and 27
reflection%/Without the transducers, the loss increases togz.l dB. o = Z F(kAz)exp {_jﬁ (k= ko)m} ’
The loss can be lowered under 0.04 dB through longer trans- k=ko
ducers withp,; = 1.1a, py2 = 1.2a, pys = 1.3a, pra = 1.4a, m=0,1,2, ..., N -1 15)

5 = 1.5a, = 1.6a, = 1.7a, = 1.8a, = 1.9a, L .
Prs = 0 ga pr6 = o PuT = 2 D Pbs =0 P = % e vesolution is given bgr /NAz. If NAz is equal to a pe-
on1 = 0.9a, pp2 = 0.8a, p.3 = 0.7a, ppg = 0.6a, pps = 0.5a, . : A .
_ - - - riod of the wave field, the periodic field consists of the waves
pre = 0.4a, ppr = 0.3a, prs = 0.2a, andp,9 = 0.1a. The ith ber /(N A H A ;
converted wave is propagated along the line of disks witho{lf _Iwgvenuml te t;:/( 73”; owevt?]rj\f zcan?o neces;— .
loss. It can be said that the line of disks operates as a Iossl?-.@gy e equdatho 6 eldpgrlo ecaudsef € propagation conshan IS
waveguide, except for attenuation regions discussed later. unknown and tne field IS composed of So many waves, as snown
in (14). If there is a wave component not equatg/ (N Az)m,
B. Phase Constant several coefficients in the neighborhood of the wave component
Th t . iodi ide with infinite lenath then takes a value of nonzero. Whichever wavenumber we may
dist .E Stpsc rum (|jn a Ft)ert'r? Ic V\;?\l:egw € VIV' i n lee engtN Bhoose agl, the value contains the error of order of the reso-
istributed according to the well-known relation [12] lution. For increasingV, the resolution becomes high. For ex-
B, =P+ @’ g=0,£1, +2, ... (14) @ample, field data extending 100 wavelength is necessary for ob-
taining resolution accuracy better than 1%. It takes a lot of time
where denotes the phase constant of the fundamental waaed memory to calculate such a long region, though we have
Though waveguides with infinite length do not actually existemoved the dependency on thalirection from FDTD calcu-
the propagation constant is also useful in the applications. Helatjon in the previous section.

kn_1
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Fig. 6. DFT spectrum of the deeply corrugated waveguide with= 0.7a, [ ]
w, = 0.7a, p, = 1.5a, p,, = 0.5a,e, = 2.0, and length of 36 periods for 28 1 26f 7
ka = 1.65. - 1 - 1
L 3
Now we are concerned with only one wave and want to de 2.4=— L L

n |
termine the wavenumber, i.¢1, We intend to makevV Az cor- 200 (c)
respond not to the period of the total field, but to an integral

multiple of the period of the concerned wave. Using field data

; — _ _ Fig. 7. Plot of the estimateda of a uniform waveguide as increasifg for:
at N points, I, (N) (m = 0,1,2, ..., N — 1) are calcu @L = 40, (b) L = 60, (c) L = 80, (d) L = 100 with radiusa, ¢, = 2.0,
lated. The largest coefficietts, o (V) is chosen from the co- 5igrq = 2.42.

efficients in the range of the fundamental wave. Similarly, using
field dataatv — ¢ (¢ =1,2, ..., L — 1) points,F,,,(N — £)

400 N

(m=0,1,2,..., N —¢—1) are calculated and the largest

coefficientst';, ¢y (IV — £) are chosen, respectively. It can be ex-

pected thatone dfV — )Az (4 =0, 1, 2, ..., L—1)isclose power

to an integral multiple of the period of the concerned wave, and N .

the Fjs,;y (N — £) then becomes maximum with respect/to uniform ; corrugated section ; PML
WhenF;, ) (N — £) becomes maximum far = £,,,«, the esti- —_— :

mated value fog is given by2zn /(N — £0x ) A2)(bipax)- IN
order to examine the validity, we apply this procedure to the field
in a uniform waveguide with no corrugation and compare the re-
sults with the true value obtained analytically. In Fig. 7(a)—(d),
the convergence of the estimatég,;a is plotted as a function

of N for a uniform waveguide with radius and ka = 2.42, > 2
wherej,,,; denotes the phase constahtis chosen as 40, 60,

80, and 100, respectively. F&F > 400 andL > 80, the esti- power

mated values converge to 2.813. Compared with the resolution d uniform  + corrugated section

0.125 of DFT forN = 500, the estimated value is almost equal section | ¢ PML
to the true value of 2.806. —

C. Attenuation Constant

There are attenuation regions proper to dielectric waveguides
with periodic structure. The guided wave is attenuated owing to
the Bragg reflection or the leaky wave. In the leaky-wave re-
glon the gu|ded power decreases as the wave propagates ”'F @ Schematic power distributions of the forward and the backward waves:

o . . 0( in the shorter corrugated section and (b) in the longer corrugated section.
waveguide, and the attenuation constant can be determined by
evaluating Poynting vectors passing cross sections of the wave-
guide. Inthe Bragg reflection region, on the other hand, there iagthe right-hand-side end by a PML. In the periodic waveguide
forward and backward wave. The schematic power distributi@ection, the forwarding wave decreases with respect te-tlie
of the two waves is shown in Fig. 8, where the reflection at threction. The reflecting wave is zero at the right-hand-side end

transducer is neglected. The corrugation section is terminatatt increases with respect to the-direction. As shown in this
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0.2 : . . :
o 3 d/a=1.0
3 B ™ 20¢ 0.7
a I
[ 2
0.1 © 0.5
f . =
0.0=="3% 25 0
(@ ke %% 2z . 22
. ka .
0.2
3 Fig. 10. Attenuation constant in the Bragg reflection region of a dielectric-rod
« - waveguide for different corrugation depth= 0.3,0.5,0.7, and1.0.
3 B o
0.1F 2 by measuring the field attenuation along the corrugated wave-
[ a guide. The analysis results agree comparatively with the exper-
1 imental values.
Now, theHE,; -type wave is fed through the uniform wave-
0.0 ) o guide into the periodic waveguide. Owing to the corrugation,
' 2.0 25 ka the wave energy can be converted, in the high-frequency region,
(b) into the higher order waves with the same field distribution in

, , _ thep-direction. Higher order waves with different field distribu-
Ecl)%}l?é atsétsvg%fé%?dinaﬁff S%Tlft?lﬂfsjsoé72‘,”;§'éf’clﬁ‘.’g ;{‘2:@ %égsjy tions do not occur because the corrugation is axially symmetric.
ande, = 2.0 and (b) the disk waveguide wit, = 0.7a, w, = 0.7¢, 1hus, the formulation in the preceding section can be applied to
p» = 2.0a,p,, = 0.0¢, ande, = 2.0. The analysis results are plotted by solidthe analysis of these waves with distribution in the formaef,
lines and the experimental results are plotted by circles. or sin ¢. By discrete Fourier transforming the results, the spec-

trum of the field in the periodic waveguide can be obtained. In
figure, the Poynting vector is constant on any cross sections the low-frequency region, only the spatial spectrum relative to

Fig. 8(a), the Poynting vector on the plane- z, is given by ~ the wave shownin Fig. 9 appears. Abdve= 2.90, other peaks
are found in the spectrum of field in the disk waveguide. Above

Po(zg) = exp {—2a(z. — 20) } Pp(20)2 (16) ka = 3.29, other peaks are found in the spectrum of field in the
deeply corrugated waveguide. Thus, below these frequencies,
where Ps(zg)# denotes the Poynting vector of the forwardinghese waveguides can operate without the influence of higher
wave on the plane = zy. Fig. 8(b) shows the power distributionorder waves.
in a longer corrugated section. The Poynting vector on the plandn Fig. 10, the attenuation constant in the Bragg reflection
z = 2o IS given by region is shown for different corrugation depthd is given by

Po’(z0) = exp {—2a(z. — 20) } Pr(z0)%. a7 d=pp—a=a—pn (19)

so that the average radius of the waveguides may be kept con-
stant. For increasing, the value of attenuation increases and the
In Po(z) — In Po’(z) stopband width becomes broader. The attenuation and stopband
= 2z — 2.) : (18)  width of the disk waveguide are over twice as large compared
' with those of the waveguide with shallow corrugatida- 0.3.

The dispersion relations of the deeply corrugated and diskThe attenuation observed fén > 2.2 or 2.3 in Fig. 9 is
waveguides are shown in Fig. 9(a) and (b), respectively. The didlte to the radiative leakage. The attenuation of the disk wave-
waveguide also has the propagation region without loss in thaide is smaller than that of the deeply corrugated waveguide. In
low-frequency region. Arounfla = 2.0, « becomes large. The Fig. 11, the attenuation constant due to the radiative leakage is
stopband is due to the Bragg reflection, whérie nearly equal plotted as a function of the corrugation degthy takes a max-
to 7 /p. The field becomes very small as it propagates. Aftémum value with respect to the corrugation depth. The amount
compensating the attenuation, we apply DFT to the field dad&radiative leakage is not so large in the disk waveguide. The
and determine the estimated valugiofVe measure the disper-radiative leakage can be considered as the coupling between the
sion relations for the deeply corrugated waveguide. In Fig. 9(aided and radiative waves. The coupling may be weak in very
the open circles show the phase constants and the closed cirdksp corrugation.
show the attenuation constants. The experimental phase corfig. 12 shows the influence of the corrugation on the phase
stants are obtained by measuring the resonant frequencies ofitrestants outside the Bragg reflection region. The change from
corrugated waveguide with large copper sheets pasted on bégh;, are plotted in ordinate and the corrugation depth in ab-
end faces. The experimental attenuation constants are obtaisgdsa. Below the reflection region, for increasih@ becomes

Thus, the attenuation constanis given by
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Fig. 11. Attenuation constant as a functiorkaffor the corrugated waveguide

with w, = 0.7a, w,, = 0.7a, andes,. = 2.0.

0.0

s
d/a

Fig. 12. Change of phase constant from,; versus corrugation depthof a
dielectric-rod waveguide with,. = 2.0.

0.05 i

2.0 2.5
ka

Fig. 13. Comparison of the attenuation constant and the phase constal
calculated by the present method (solid line) and the Yasuura’s method
[11], [13] (broken line) as a function dfa for the sinusoidally corrugated

waveguide.

Two results are almost the same. This shows the validity of the
present method for corrugated waveguides.

IV. CONCLUSION

We have analyzed dielectric waveguides with a deep corru-
gation by the FDTD method. By taking account of the field dis-
tribution, we have had the FDTD formulation independent of
the coordinater to calculate long waveguides. A procedure of
deciding the propagation constant from FDTD results has been
presented and the convergence of the estimated value has been
confirmed. The dispersion relations has been obtained and the
dependence of the amount of radiation on the corrugation ampli-
tude has been brought out. The amount of radiative leakage takes
a maximum value by choosing the corrugation amplitude prop-
erly. Dielectric disks located in a line function as a waveguide
with low loss if the eigenmode is excited through the trans-
ducer. Inthe Bragg reflection region, the disk waveguides shows
the strong attenuation characteristics with wide bandwidth. The
amount of radiative leakage is not so large as that of deeply cor-
rugated waveguides. The Bragg reflection in the corrugated rod
waveguides has been recently applied to band rejection filters.
The above results show that band rejection filters with large at-
tenuation in the stopband and lower loss in the passband can be
realized by using disk waveguides.
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